

Welcome to nexb-skeleton’s documentation!

Contents:

	Usage
	A brand new project

	Update an existing project

	Customizing

	Initializing a project

	Generating requirements.txt and requirements-dev.txt

	Collecting and generating ABOUT files for dependencies

	Usage after project initialization

	Contributing to the Documentation
	Setup Local Build

	Share Document Improvements

	Continuous Integration

	Style Checks Using Doc8

	Interspinx

	Style Conventions for the Documentaion

	Converting from Markdown

Indices and tables

	Index

	Module Index

	Search Page

Usage

A brand new project

git init my-new-repo
cd my-new-repo
git pull git@github.com:nexB/skeleton

Create the new repo on GitHub, then update your remote
git remote set-url origin git@github.com:nexB/your-new-repo.git

From here, you can make the appropriate changes to the files for your specific project.

Update an existing project

cd my-existing-project
git remote add skeleton git@github.com:nexB/skeleton
git fetch skeleton
git merge skeleton/main --allow-unrelated-histories

This is also the workflow to use when updating the skeleton files in any given repository.

Customizing

You typically want to perform these customizations:

	remove or update the src/README.rst and tests/README.rst files

	set project info and dependencies in setup.cfg

	check the configure and configure.bat defaults

Initializing a project

All projects using the skeleton will be expected to pull all of it dependencies
from thirdparty.aboutcode.org/pypi or the local thirdparty directory, using
requirements.txt and/or requirements-dev.txt to determine what version of a
package to collect. By default, PyPI will not be used to find and collect
packages from.

In the case where we are starting a new project where we do not have
requirements.txt and requirements-dev.txt and whose dependencies are not yet on
thirdparty.aboutcode.org/pypi, we run the following command after adding and
customizing the skeleton files to your project:

./configure

This will initialize the virtual environment for the project, pull in the
dependencies from PyPI and add them to the virtual environment.

Generating requirements.txt and requirements-dev.txt

After the project has been initialized, we can generate the requirements.txt and
requirements-dev.txt files.

Ensure the virtual environment is enabled.

source venv/bin/activate

To generate requirements.txt:

python etc/scripts/gen_requirements.py -s venv/lib/python<version>/site-packages/

Replace <version> with the version number of the Python being used, for example:
venv/lib/python3.6/site-packages/

To generate requirements-dev.txt after requirements.txt has been generated:

./configure --dev
python etc/scripts/gen_requirements_dev.py -s venv/lib/python<version>/site-packages/

Note: on Windows, the site-packages directory is located at venv\Lib\site-packages\

python .\\etc\\scripts\\gen_requirements.py -s .\\venv\\Lib\\site-packages\\
.\configure --dev
python .\\etc\\scripts\\gen_requirements_dev.py -s .\\venv\\Lib\\site-packages\\

Collecting and generating ABOUT files for dependencies

Ensure that the dependencies used by etc/scripts/fetch_thirdparty.py are installed:

pip install -r etc/scripts/requirements.txt

Once we have requirements.txt and requirements-dev.txt, we can fetch the project
dependencies as wheels and generate ABOUT files for them:

python etc/scripts/fetch_thirdparty.py -r requirements.txt -r requirements-dev.txt

There may be issues with the generated ABOUT files, which will have to be
corrected. You can check to see if your corrections are valid by running:

python etc/scripts/check_thirdparty.py -d thirdparty

Once the wheels are collected and the ABOUT files are generated and correct,
upload them to thirdparty.aboutcode.org/pypi by placing the wheels and ABOUT
files from the thirdparty directory to the pypi directory at
https://github.com/nexB/thirdparty-packages

Usage after project initialization

Once the requirements.txt and requirements-dev.txt have been generated
and the project dependencies and their ABOUT files have been uploaded to
thirdparty.aboutcode.org/pypi, you can configure the project as needed, typically
when you update dependencies or use a new checkout.

If the virtual env for the project becomes polluted, or you would like to remove
it, use the --clean option:

./configure --clean

Then you can run ./configure again to set up the project virtual environment.

To set up the project for development use:

./configure --dev

To update the project dependencies (adding, removing, updating packages, etc.),
update the dependencies in setup.cfg, then run:

./configure --clean # Remove existing virtual environment
source venv/bin/activate # Ensure virtual environment is activated
python etc/scripts/gen_requirements.py -s venv/lib/python<version>/site-packages/ # Regenerate requirements.txt
python etc/scripts/gen_requirements_dev.py -s venv/lib/python<version>/site-packages/ # Regenerate requirements-dev.txt
pip install -r etc/scripts/requirements.txt # Install dependencies needed by etc/scripts/bootstrap.py
python etc/scripts/fetch_thirdparty.py -r requirements.txt -r requirements-dev.txt # Collect dependency wheels and their ABOUT files

Ensure that the generated ABOUT files are valid, then take the dependency wheels
and ABOUT files and upload them to thirdparty.aboutcode.org/pypi.

Contributing to the Documentation

Setup Local Build

To get started, create or identify a working directory on your local machine.

Open that directory and execute the following command in a terminal session:

git clone https://github.com/nexB/skeleton.git

That will create an /skeleton directory in your working directory.
Now you can install the dependencies in a virtualenv:

cd skeleton
./configure --docs

Note

In case of windows, run configure --docs instead of this.

Now, this will install the following prerequisites:

	Sphinx

	sphinx_rtd_theme (the format theme used by ReadTheDocs)

	docs8 (style linter)

These requirements are already present in setup.cfg and ./configure –docs installs them.

Now you can build the HTML documents locally:

source venv/bin/activate
cd docs
make html

Assuming that your Sphinx installation was successful, Sphinx should build a local instance of the
documentation .html files:

open build/html/index.html

Note

In case this command did not work, for example on Ubuntu 18.04 you may get a message like “Couldn’t
get a file descriptor referring to the console”, try:

see build/html/index.html

You now have a local build of the AboutCode documents.

Share Document Improvements

Ensure that you have the latest files:

git pull
git status

Before commiting changes run Continious Integration Scripts locally to run tests. Refer
Continuous Integration for instructions on the same.

Follow standard git procedures to upload your new and modified files. The following commands are
examples:

git status
git add source/index.rst
git add source/how-to-scan.rst
git status
git commit -m "New how-to document that explains how to scan"
git status
git push
git status

The Scancode-Toolkit webhook with ReadTheDocs should rebuild the documentation after your
Pull Request is Merged.

Refer the Pro Git Book [https://git-scm.com/book/en/v2/] available online for Git tutorials
covering more complex topics on Branching, Merging, Rebasing etc.

Continuous Integration

The documentations are checked on every new commit through Travis-CI, so that common errors are
avoided and documentation standards are enforced. Travis-CI presently checks for these 3 aspects
of the documentation :

	Successful Builds (By using sphinx-build)

	No Broken Links (By Using link-check)

	Linting Errors (By Using Doc8)

So run these scripts at your local system before creating a Pull Request:

cd docs
./scripts/sphinx_build_link_check.sh
./scripts/doc8_style_check.sh

If you don’t have permission to run the scripts, run:

chmod u+x ./scripts/doc8_style_check.sh

Style Checks Using Doc8

How To Run Style Tests

In the project root, run the following commands:

$ cd docs
$./scripts/doc8_style_check.sh

A sample output is:

Scanning...
Validating...
docs/source/misc/licence_policy_plugin.rst:37: D002 Trailing whitespace
docs/source/misc/faq.rst:45: D003 Tabulation used for indentation
docs/source/misc/faq.rst:9: D001 Line too long
docs/source/misc/support.rst:6: D005 No newline at end of file
========
Total files scanned = 34
Total files ignored = 0
Total accumulated errors = 326
Detailed error counts:
 - CheckCarriageReturn = 0
 - CheckIndentationNoTab = 75
 - CheckMaxLineLength = 190
 - CheckNewlineEndOfFile = 13
 - CheckTrailingWhitespace = 47
 - CheckValidity = 1

Now fix the errors and run again till there isn’t any style error in the documentation.

What is Checked?

PyCQA is an Organization for code quality tools (and plugins) for the Python programming language.
Doc8 is a sub-project of the same Organization. Refer this README [https://github.com/PyCQA/doc8/blob/master/README.rst] for more details.

What is checked:

	invalid rst format - D000

	lines should not be longer than 100 characters - D001

	RST exception: line with no whitespace except in the beginning

	RST exception: lines with http or https URLs

	RST exception: literal blocks

	RST exception: rst target directives

	no trailing whitespace - D002

	no tabulation for indentation - D003

	no carriage returns (use UNIX newlines) - D004

	no newline at end of file - D005

Interspinx

ScanCode toolkit documentation uses Intersphinx [http://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html]
to link to other Sphinx Documentations, to maintain links to other Aboutcode Projects.

To link sections in the same documentation, standart reST labels are used. Refer
Cross-Referencing [http://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#ref-role] for more information.

For example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

Now, using Intersphinx, you can create these labels in one Sphinx Documentation and then referance
these labels from another Sphinx Documentation, hosted in different locations.

You just have to add the following in the conf.py file for your Sphinx Documentation, where you
want to add the links:

extensions = [
'sphinx.ext.intersphinx'
]

intersphinx_mapping = {'aboutcode': ('https://aboutcode.readthedocs.io/en/latest/', None)}

To show all Intersphinx links and their targets of an Intersphinx mapping file, run:

python -msphinx.ext.intersphinx https://aboutcode.readthedocs.io/en/latest/objects.inv

Warning

python -msphinx.ext.intersphinx https://aboutcode.readthedocs.io/objects.inv will give
error.

This enables you to create links to the aboutcode Documentation in your own Documentation,
where you modified the configuration file. Links can be added like this:

For more details refer :ref:`aboutcode:doc_style_guide`.

You can also not use the aboutcode label assigned to all links from aboutcode.readthedocs.io,
if you don’t have a label having the same name in your Sphinx Documentation. Example:

For more details refer :ref:`doc_style_guide`.

If you have a label in your documentation which is also present in the documentation linked by
Intersphinx, and you link to that label, it will create a link to the local label.

For more information, refer this tutorial named
Using Intersphinx [https://my-favorite-documentation-test.readthedocs.io/en/latest/using_intersphinx.html].

Style Conventions for the Documentaion

	Headings

(Refer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections])
Normally, there are no heading levels assigned to certain characters as the structure is
determined from the succession of headings. However, this convention is used in Python’s Style
Guide for documenting which you may follow:

with overline, for parts

	with overline, for chapters

=, for sections

-, for subsections

^, for sub-subsections

“, for paragraphs

	Heading Underlines

Do not use underlines that are longer/shorter than the title headline itself. As in:

Correct :

Extra Style Checks

Incorrect :

Extra Style Checks

Note

Underlines shorter than the Title text generates Errors on sphinx-build.

	Internal Links

Using :ref: is advised over standard reStructuredText links to sections (like
`Section title`_) because it works across files, when section headings are changed, will
raise warnings if incorrect, and works for all builders that support cross-references.
However, external links are created by using the standard `Section title`_ method.

	Eliminate Redundancy

If a section/file has to be repeated somewhere else, do not write the exact same section/file
twice. Use .. include: ../README.rst instead. Here, ../ refers to the documentation
root, so file location can be used accordingly. This enables us to link documents from other
upstream folders.

	Using :ref: only when necessary

Use :ref: to create internal links only when needed, i.e. it is referenced somewhere.
Do not create references for all the sections and then only reference some of them, because
this created unnecessary references. This also generates ERROR in restructuredtext-lint.

	Spelling

You should check for spelling errors before you push changes. Aspell [http://aspell.net/]
is a GNU project Command Line tool you can use for this purpose. Download and install Aspell,
then execute aspell check <file-name> for all the files changed. Be careful about not
changing commands or other stuff as Aspell gives prompts for a lot of them. Also delete the
temporary .bak files generated. Refer the manual [http://aspell.net/man-html/] for more
information on how to use.

	Notes and Warning Snippets

Every Note and Warning sections are to be kept in rst_snippets/note_snippets/ and
rst_snippets/warning_snippets/ and then included to eliminate redundancy, as these are
frequently used in multiple files.

Converting from Markdown

If you want to convert a .md file to a .rst file, this tool [https://github.com/chrissimpkins/md2rst]
does it pretty well. You’d still have to clean up and check for errors as this contains a lot of
bugs. But this is definitely better than converting everything by yourself.

This will be helpful in converting GitHub wiki’s (Markdown Files) to reStructuredtext files for
Sphinx/ReadTheDocs hosting.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to nexb-skeleton’s documentation!

 		
 Usage

 		
 A brand new project

 		
 Update an existing project

 		
 Customizing

 		
 Initializing a project

 		
 Generating requirements.txt and requirements-dev.txt

 		
 Collecting and generating ABOUT files for dependencies

 		
 Usage after project initialization

 		
 Contributing to the Documentation

 		
 Setup Local Build

 		
 Share Document Improvements

 		
 Continuous Integration

 		
 Style Checks Using Doc8

 		
 How To Run Style Tests

 		
 What is Checked?

 		
 Interspinx

 		
 Style Conventions for the Documentaion

 		
 Converting from Markdown

_static/plus.png

_static/file.png

_static/minus.png

